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The thermolysis of ethyl azidoformate in refluxing 2,3-dimethyl-2-butene proceeds through competitive 1,2,3- 
A2-triazoline and carbethoxynitrene routes. The triazoline route dominates by a factor of about 2-3. The main 
products are 3,3-dimethyl-2-butylidene ethyl carbamate (62%), l-carbethoxy-2,2,3,3-tetramethylaziridine (36%), 
and N-1-(2,3-dimethyl-2-butenyl)ethyl carbamate (2.5%). 

The thermolysis of alkyl azidoformates in many simple 
olefins proceeds by rate-determining loss of nitrogen to  
give carbalkoxynitrene intermediates.l The  ultimate prod- 
uct is mainly the aziridine adduct of the olefin. However, 
the reaction can follow a different course with so-called ac- 
tivated olefins, that  is olefins which are either ~ t r a i n e d ~ - ~  
or contain strong electron-donating groups such as alkoxy6 
and amino7 substituents. With such olefins, 1,3-dipolar cy- 
cloaddition becomes important, giving 1,2,3-A2-triazoline 
intermediates. Similar trends have been observed with aryl 
azides.8 A kinetic study of aryl azide cycloadditions to  nor- 
bornene led Scheiner to  propose a transition state for tria- 
zoline formation where some positive charge has developed 
a t  the olefinic carbon atornag 

Differences in product distribution are among those fea- 
tures which distinguish between triazoline and nitrene in- 
termediates. Like nitrenes, triazolines can give aziridines. 
However, unlike nitrenes, triazolines also produce anils, 
and these are usually the dominant p r o d u ~ t s . ~ * ~ ~ ~ , ~ - ' ~  The  
often-proposed route to  the anils involves a diazonium- 
betaine intermediate (1) which partitions between the azir- 
idine 2 and the ani1 3 on loss of nitrogen (Scheme I). 
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This paper describes the thermolysis of ethyl azidofor- 
mate in 2,3-dimethyl-2-butene. I t  appears t o  be the first re- 
port of a dominant 1,2,3-A2-triazoline route for the ther- 
molysis of an alkyl azidoformate in a simple olefin. The  evi- 
dence further suggests that  this is a borderline case of com- 
petitive nitrene and triazoline formation. 

Thermolysis of ethyl azidoformate in refluxing 2,3-di- 
methyl-2-butene carried to  about 90% conversion gives a 
quantitative yield of three carbamates. These are 3,3-di- 
methyl-2-butylidine ethyl carbamate (4), l-carbethoxy- 
2,2,3,3-tetramethylaziridine (5), and N-1-(2,3-dimethyl-2- 
buteny1)ethyl carbamate (6). I t  is possible that  a very small 
amount of N-3-(2,3-dimethyl-l-butenyl)ethyl carbamate 
(7) might also be present but is not completely resolved 
from the imide 4 under our VPC conditions. The  imide 4 is 
not a product of the aziridine 5. Repeating this reaction in 
the presence of labeled aziridine, 1-carbethoxy-2-methyl- 

dl-2,3,3-trimethylaziridine (8) (Table I), gives negligible 
label in the imide 4. Essentially all of the added label is ac- 
counted for as unconverted aziridine. Furthermore, forcing 
the thermal rearrangement of 5 a t  150' (neat) gives only 
the carbamate 7 in a first-order reaction with k l  = 0.0207 
hr-l (u = 2 X t1/2 = 34 hr. 

4 (62%) 

The dominance of the imide 4 in the product distribu- 
tion from the thermolysis of ethyl azidoformate in 2,3-di- 
methyl-2-butene suggests that  the major route for this re- 
action is through l-carbethoxy-4,4,5,5-tetramethyl-1,2,3- 
A2-triazoline (9). This could decompose to the imide 4 
through a methide shift analogous to  the hydride shift in 
Scheme I. To  confirm that  the imide 4 does not result from 
an anomalous reaction of carbethoxynitrene, we generated 
authentic carbethoxynitrene in 2,3-dimethyl-2-butene by 
both a-elimination from N-p-nitrobenzenesulfonoxyure- 
thane12 (10) and photolysis of ethyl a~ id0fo rma te . l~  The  re- 
sults show that  the reaction of carbethoxynitrene with 2,3- 
dimethyl-2-butene is typical of carbethoxynitrene-olefin 
reactions. The expected aziridine 5 is, in fact, the dominant 
product with only small amounts of imide 4 being present. 

There remains the question of whether any of the aziri- 
dine 5 from the thermolysis of ethyl azidoformate in 2,3- 
dimethyl-2-butene comes from a competing carbethoxyni- 
trene route. The  presence of carbamate 6 suggests that  i t  
does. Assuming that  the mole ratio, 5/6, from the a-elimi- 
nation reaction (Table 11) can serve as an  approximate 
index of carbethoxynitrene-derived products, one can esti- 
mate tha t  about 60% of the aziridine 5 from ethyl azidofor- 
mate thermolysis is produced in this way. This also means 
that  triazoline formation is about three times faster than 
carbethoxynitrene formation. To  test  this prediction, a 
comparison was made between the observed first-order 
rate constant for ethyl azidoformate thermolysis in 2,3- 
dimethyl-2-butene and that  in 2,3-dimethylbutane and cy- 
clohexane (Table 111). Only carbethoxynitrene formation 
can be rate determining in these two saturated c6 hydro- 
carbons. Since the rate of azidoformate thermolysis is high- 
ly insensitive to  solvent polarity,' such a comparison might 
serve as a useful test. From the above relative rate esti- 
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Table I 
Thermolysis of 0.34 M Ethyl  Azidoformate in 

2,3-Dimethyl-2-butene with Added 
1 -Carbethoxy-2-methyl-d1-2,3,3-trimethylaziridine 

Products, mmol 

-60 -di 

+e'"' Et 

Reactants (mmol) - d O  'dl 

0 

0 

" 8 (1.87) I 
2.24 

II 
1. EtO-C-N3 (6.87) 3.84 

2 .  EtO-C-NB (6.87) 
5 (0.22) 3.92 0.08 (a = 0.07) 2.70 1.73 

mate, thermolysis in 2,3-dimethyl-2-butene is expected to  
be about four times faster than in the saturated hydrocar- 
bons. While there is a rate enhancement in 2,3-dimethyl- 
2-butene, i t  is only by a factor of 2.0-2.4 rather than 4. This 
is in better agreement with the  2.6-fold rate enhancement 
expected if all the aziridine 5 were produced through car- 
bethoxynitrene. Thus, these two estimates of the car- 
bethoxynitrene component in ethyl azidoformate thermol- 
ysis are not in good agreement. They bracket the nitrene 
contribution at between 60 and 100% of the aziridine 5 pro- 
duced. The reason is unclear. Possibly the high sensitivity 
of the predicted relative rate to  small errors in the analysis 
of a minor component, t he  carbamate 6, is responsible. 
Nevertheless, both estimates support carbethoxynitrene as 
an important source of the aziridine 5. 

Therefore, i t  seems that four methyl substituents on a 
double bond provide sufficient charge stabilization in the  
triazoline-forming transition state9 to make i t  the domi- 
nant reaction. This raises the interesting question of 
whether this chemistry of ethyl azidoformate is peculiar to 
2,3-dimethyl-2-butene or fairly general for tetraalkyl-sub- 
stituted olefins. 

Experimental Section 
Reagents. Ethyl azidoformate was prepared according to the 

method of Lwowski and Mattingly14 and N-p-nitrobenzenesulfo- 
noxyurethane (10) was prepared by the method of Lwowski and 
Maricich.12 2,3-Dimethyl-2-butene (99%) was purchased from 
Chemical Samples Co., Columbus, Ohio, and distilled from Na-K 
under nitrogen. A middle fraction was taken and shown by VPC to 
be >99.9% pure. 

Thermolysis of Ethyl Azidoformate in 2,3-Dimethyl-2-bu- 
tene. Preparative Scale. A 250-ml, three-neck flask was fitted 
with a water-cooled condenser, a gas dispersion tube, and a mag- 
netic stirring bar. The opening at the top of the condenser was di- 
rected into a shallow mercury well with tubing. The apparatus was 
flame dried under nitrogen and charged with 5.94 g (0.0517 mol) of 
ethyl azidoformate and 150 ml of 2,3-dimethyl-2-butene. The 
stirred solution was purged with nitrogen, then heated, under ni- 
trogen, at  gentle reflux for 310 hr. This corresponds to about 90% 
conversion as measured by the disappearance of the 2140-cm-I 
band in ethyl azidoformate. The product was distilled on a spin- 
ning band column, giving aziridine 5: bp 59' (1.5 mm); ir (neat) no 
NH, 1705 cm-I (C=O); NMR (CDC13) 6 1.26 ppm (t, 3, J = 7 Hz), 
1.28 ppm (8 ,  12), 4.13 (q, 2, J = 7 Hz); mass spectrum parent ion 
m/e 171. 

63.32: H. 9.83: N. 8.28. 
Anal. Calcd for CgH17N02: C, 63.12; H, 10.01; N, 8.18. Found: C, 

Imide'l: bp69-70' (1.8 mm); ir (neat) no NH, 1717 (C=O), 1660 
cm-I (C=N); NMR (CDC13) S 1.16 (s, 9), 1.32 (t, 3, J = 7 Hz), 1.97 
(9, 3), 4.24 ppm (q, 2, J = 7 Hz); mass spectrum parent ion mle 
171. 

Anal. Calcd for CgH17NOz: C, 63.12; H, 10.01; N, 8.18. Found: C, 
62.20; H, 9.91; N, 8.10. 

Table I1 
Product  Distributions from the Reaction of 

Carbethoxsnitrene with 2.3-Dimethyl-2-butene 

Products, % yield 

Method 4 5 6 7 

0-Elimination (10)'' 0.5 59. 6.9 1.0 

Photolysis (EtO- l -N3)b 1. 54. 8.8 0.9 

a Dichloromethane used as cosolvent (45% v/v); reaction carried 
out at 42". Reaction carried out at 0". 

Table  I11 
Kinetics of E thy l  Azidoformate Decomposition 

at 70" in c6 Hydrocarbon Solvents 

k X lo3, 

Solvent Concn, .hi hr" 0 x 1 0 ~  k(>=<)/k 

2,3-Dimethy1-2-butene 0.23 5.3 0.11 1.0 
2,3-Dimethylbutane 0.18 2.7 0.01 2.0 
Cyclohexane 0.23 2.2 0.06 2.4 

The carbamate 6 was not isolated but identified by comparing 
its VPC retention time and normalized mass spectrometric frag- 
mentation pattern with those of authentic material. Carbamate 6: 
bp 81-82' (0.35 mm); ir (neat) 3340 (NH), 1695 cm-' (C=O); 
NMR (CDC13) 6 1.23 (t, 3, J = 7 Hz), 1.68 (broad s, 9), 3.78 (d, 2, J 
= 6 Hz), 4.12 (q, 2, J = 7 Hz), 4.7 ppm (broad, 1). 

Analytical Scale. A two-neck, 25-ml flask was fitted with a 
water-cooled condenser and a gas inlet tube. The opening at the 
top of the condenser was directed into a shallow mercury well with 
tubing. The apparatus was flame dried under nitrogen and charged 
with 0.790 g (0.00687 mol) of ethyl azidoformate and 20 ml of 2,3- 
dimethyl-2-butene. The system was purged with 600 ml of nitro- 
gen, then heated at gentle reflux for 310 hr. The reaction mixture 
was cooled, transferred into a container having a known quantity 
of naphthalene (internal VPC standard), and analyzed by VPC. 
Quantitative analysis was performed on a calibrated 5 ft X 0.25 in. 
column packed with 20% Ucon 50 HB5100 on 70/80 mesh Anak- 
rom U. A glass sleeve was used in the injection port, which was 
maintained at 190-200°. 

Photolysis of Ethyl Azidoformate. A PCQ9G-1 photochemical 
immersion lamp, Ultraviolet Products, Inc., with a 2537-cm-' peak 
intensity at  2.5 W was housed in a reaction vessel prepared from a 
7.5-in. length of 18-mm Pyrex tubing. The reactor contained a gas 
inlet and outlet tube. It was charged with 0.88 g (7.6 mmol) of 
ethyl azidoformate and 21 ml of 2,3-dimethyl-2-butene. The solu- 
tions was purged with 400 ml of nitrogen through a 6-in. needle, 
cooled in an ice bath, and irradiated for 18 hr. Quantitative analy- 
sis was performed by VPC in the usual way. Distillation gave 0.53 g 
(41%) of aziridine 5. 

a-Elimination in N-p-Nitrobenzenesulfonoxyurethane (10). 
A three-neck, 50-ml flask was fitted with a nitrogen inlet, a rubber 
septum, a magnetic stirring bar, and a water-cooled condenser. 
The opening at  the top of the condenser was directed to a shallow 
mercury well with tubing. The apparatus was flame dried under 
nitrogen, then charged with 0.770 g (2.65 mmol) of 10, 11.7 ml of 
2,3-dimethyl-2-butene, and 9.5 ml of dichloromethane. The system 
was purged with about 400 ml of nitrogen and heated to gentle re- 
flux. Triethylamine (0.42 ml) was then added through a syringe 
over a 5-min period. Triethylammonium p -nitrobenzenesulfonate 
precipitates during the addition. After addition was complete, the 
mixture was stirred at  gentle reflux for an additional 2 hr and 
cooled, and the solution was decanted from the precipitate into a 
bottle containing naphthalene, the VPC internal standard. The 
precipitate was rinsed twice with 2,3-dimethyl-2-butene and the 
rinse combined with the decanted solution. The mixture was then 
chilled and shaken with 15 ml of cold water. The organic phase was 
decanted off, chilled to -13' to crystallize residual water, and ana- 
lyzed by VPC in the usual way. The purpose of this water extrac- 
tion step is to remove small amounts of dissolved triethylammon- . 
ium p-nitrobenzenesulfonate. This can catalyze some rearrange- 
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ment of the aziridine 5 to the carbamate 7 in the injection port of 
the gas chromatograph. For example, analysis of the chilled reac- 
tion mixture without the water extraction step gives 4 (0.8%), 5 
(55%), 6 (7.0%), and 7 (2.8%). 
l-Chloro-2,3-dimethyl-2-butene-4-d~ ( 1  1). DCl was generated 

from 566 g (4.02 mol) of benzoyl chloride and 16.1 g (0.805 mol) of 
DzO according to the method of Brown and G r ~ o t . ' ~  This was di- 
rected through a gas dispersion tube into a stirred, three-neck, 
250-ml flask containing 120.1 g (1.46 mol) of 2,3-dimethyl-1,3-bu- 
tadiene cooled to -80°.16 After DCl generation was complete, the 
contents were purged with nitrogen and allowed to warm to room 
temperature and stand for 3 days. Distillation gave three fractions, 
30.0 g (0.253 mol) of 3-chloro-2,3-dimethyl-l-butene-4-dl (12), bp 
35' (45 mm) [lit.I6 bp 32' (45 mm)], 97 g of an unknown fraction, 
bp 37-53' (45 mm), and 48.6 g (0.410 mol) of the chloride 11, bp 
53-55' (45 mm) [lit.I6 bp 57.7' (45 mm)]. Mass spectra: 11,7% do, 
88% di, 5% dz; 12,7% do, 89% di, 4% dz. 
2,3-Dimethyl-2-butene-d1 (13). The chloride 11 was reduced 

using the method of Brown and Bell.17 A three-neck 1-1. flask was 
fitted with an addition funnel, a magnetic stirring bar, a thermom- 
eter, and a water-cooled condenser. I t  was charged with 390 ml of 
glyme, 210 ml of water, and 24 g (0.60 mol) of sodium hydroxide. 
The mixture was stirred and heated to 55'. To this was added 90.6 
g (2.40 mol) of sodium borohydride. When dissolved, 8.75 g (0.0739 
mol) of the chloride 11 was added over a 15-min period. Some cool- 
ing was necessary to maintain the temperature at 50-55'. There 
was considerable gas evolution. The mixture was allowed to cool 
and stirred overnight. It was then extracted with two 400-ml ali- 
quots of water. The organic phase was then dried over Cas04 and 
distilled on a spinning band column giving 11.6 g (46%) of 13, bp 
71-72', NMR (CDCl3) 1.63 ppm (s). 
l-Carbethoxy-2-methyl-d~-2,3,3-trimethylaziridine (8). A 

solution of 1.57 g (13.6 mmol) of ethyl azidoformate in 21 ml of the 
butene 13 was photolyzed in the usual way. Distillation gave 1.14 g 
(49%) of aziridine 8: NMR (CDC13) same as that of aziridine 5; 
mass spectrum, 10% do ( u  1.3),85% d l  (a 1.4),5% d2 (a 1.2). 

Kinetics of l-Carbethoxy-2,2,3,3-tetrarnethylaziridine ( 5 )  
Thermolysis. This experiment was carried out by proton NMR 
using a sealed 30-111 Kontes microcell charged with aziridine 5. The 
cell was placed in a constant-temperature bath at 150' and period- 
ically removed for analysis. The rate of carbamate 7 formation was 
followed by measuring the change in the combined area of the two 
vinylic protons in 7 relative to the total area of the methylene 

quartet of the ethoxy groups present. The final spectrum, at 88% 
conversion, was that of the carbamate 7. 

Kinetics of Ethyl Azidoformate Thermolysis. Cyclohexane 
and 2,3-dimethylbutane were purchased and further purified by 
distillation from Na-K under nitrogen. Solutions of ethyl azidofor- 
mate were prepared, charged into several 7-mm glass tubes, evacu- 
ated, and sealed with a torch. These were placed in a constant- 
temperature bath and individual samples taken periodically for 
analysis. The rate of ethyl azidoformate decomposition was fol- 
lowed by infrared using the disappearance of the 2140-cm-l band. 
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The reaction of seven heterohelicenes with AlC13 is described. The products are compounds in which the two 
helical termini of a helicene are connected by a a bond. They are called dehydrohelicenes. The intramolecular ring 
closure is limited to hetero[5]- and -[6]helicenes. In addition to the synthesis, the spectral properties of dehydro- 
helicenes are discussed. 

In our study of the synthesis, resolution, and chemistry 
of heterohelicenes,2 the preparation of dehydrohelicenes by 
a Scholl reaction became of importance. The Scholl reac- 
tion has been defined by Balaban and Nenitzescu3 as the 
elimination of two aryl-bound hydrogens accompanied by 
the formation of an aryl-aryl bond under the influence of 
Friedel-Crafts catalysts. Groen and Wynberg used this re- 
action in preparing 2 in low yield from the heterohexaheli- 
cene l4 (Scheme I). The conversion of 2 to the [7]heterocir- 
culene 3 5  prompted us to  undertake a more systematic 
study of the Scholl reaction of heterohelicenes. Compounds 
such as 2, in which the two helical termini of a helicene are 
connected by a u bond, will be called dehydrohelicenes.6 

Results 
Most of the heterohelicenes used in this study (Schemes 

I1 and 111) have been described p r e v i o u ~ l y . ~ ~ ~  The new com- 
pounds 4, 6, 7,9, and 16 were prepared by standard meth- 
ods.' In the original "Scholl" method employed by Groen: 
1 was dissolved in benzene a t  room temperature and to  this 
solution an excess of AlC13 was added. The mixture was al- 
lowed to stand for 24 hr prior to  isolating 2. This method is 
improved when a mixture of AlC13 and NaCl is used.s 
When 1, AlClS, and NaCl were mixed together and heated 
to  140°, a black melt was formed immediately. After hy- 
drolysis of this melt 2 was obtained in 95% yield. The other 
dehydrohelicenes were obtained in a similar manner. A 


